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Abstract. Quantitative estimates are obtained for the (finite) valence of functions

analytic in the unit disk with Schwarzian derivative that is bounded or of slow growth.

A harmonic mapping is shown to be uniformly locally univalent with respect to the
hyperbolic metric if and only if it has finite Schwarzian norm, thus generalizing a

result of B. Schwarz for analytic functions. A numerical bound is obtained for the

Schwarzian norms of univalent harmonic mappings.

§1. Finite valence.

Our point of departure is a classical theorem of Nehari [14] that gives a general
criterion for univalence of an analytic function in terms of its Schwarzian derivative

Sf = (f ′′/f ′)′ − 1
2 (f ′′/f ′)2 .

A positive continuous even function p(x) on the interval (−1, 1) is called a Nehari

function if (1 − x2)2p(x) is nonincreasing on [0, 1) and no nontrivial solution u of
the differential equation u′′ + pu = 0 has more than one zero in (−1, 1). Nehari’s
theorem can be stated as follows.

Theorem A. Let f be analytic and locally univalent in the unit disk D, and sup-

pose its Schwarzian derivative satisfies

|Sf(z)| ≤ 2p(|z|) , z ∈ D , (1)

for some Nehari function p(x). Then f is univalent in D.

As special cases the theorem includes the criteria |Sf(z)| ≤ 2(1 − |z|2)−2 and
|Sf(z)| ≤ π2/2 obtained earlier by Nehari [13], as well as the criterion |Sf(z)| ≤
4(1 − |z|2)−1 stated by Pokornyi [17]. The weaker inequality

|Sf(z)| ≤ 2(1 + δ2)

(1 − |z|2)2 , z ∈ D ,
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does not imply univalence, but it does imply uniform local univalence in the sense
that the hyperbolic distance d(α, β) ≥ π/δ for any pair of points α, β ∈ D where
f(α) = f(β). In a previous paper [4] we gave a streamlined proof of this result,
which is due to B. Schwarz [19], and demonstrated the sharpness of the lower bound
(see also Minda [12]). Furthermore, we showed that any weaker form |Sf(z)| ≤
C p(|z|) of Nehari’s condition (1) still implies that f has finite valence if (1 −
x2)2p(x) → 0 as x→ 1−. In particular, if |Sf(z)| ≤ C for some constant C and all
z ∈ D, then f has finite valence in the unit disk.

We now derive this last result by a more elegant method, which also provides a
quantitative bound for the valence in terms of the constant C. By the valence of f
we mean N = supw∈C n(f, w), where n(f, w) ≤ ∞ is the number of points z ∈ D

for which f(z) = w. Here is our theorem.

Theorem 1. Let f be analytic and locally univalent in the unit disk D, and suppose

its Schwarzian derivative satisfies

|Sf(z)| ≤ C , z ∈ D ,

for some constant C > π2/2 . Then |α − β| ≥
√

2/C π for any pair of points

α, β ∈ D where f(α) = f(β). Consequently, f has finite valence and assumes any

given value at most
(
1 +

√
2C
π

)2

times.

Before embarking on the proof, we recall some standard facts about the Schwarzian
derivative. It is Möbius invariant: S(T ◦ f) = Sf for every Möbius transformation

T (z) =
az + b

cz + d
, ad− bc 6= 0 .

Also, S(f ◦ T ) = ((Sf) ◦ T )T ′2 . For any analytic function ψ, the functions f with
Schwarzian Sf = 2ψ are precisely those of the form f = u1/u2, where u1 and u2

are linearly independent solutions of the differential equation u′′ +ψu = 0. Thus if
Sf = 2ψ, then f(α) = f(β) if and only if some solution of the differential equation
u′′ + ψu = 0 vanishes at α and β.

We will make use of the following lemma, which is a variant of a lemma in [7].

Lemma 1. Suppose that u = u(z) is a solution of the differential equation u′′ +
ψu = 0 for some function ψ analytic in D. Let z = z(s) , s ∈ (0, b) , be an arclength

parametrization of a line segment in D, and suppose that v(z) = |u(z(s))| > 0 for s
in the interval (0, b). Then

v′′(s) + |ψ(z(s))| v(s) ≥ 0 , 0 < s < b .

Proof of lemma. Differentiation of v2 = uu gives

v(s) v′(s) = Re
{
u′(z(s)) z′(s) u(z(s))

}
, 0 < s < b .
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But v(s) > 0 and |z′(s)| = 1, so it follows that

v(s) |v′(s)| ≤ |u′(z(s))| v(s) , or |v′(s)| ≤ |u′(z(s))| .

Differentiation of vv′ gives

vv′′ + v′
2

= Re
{
u′′z′

2
u+ |u′|2

}
,

since |z′(s)| = 1 and z′(s) is constant for the parametrization of a line segment.
Introducing the differential equation u′′ = −ψu, we conclude that

vv′′ + v′
2

= |u′|2 − Re
{
ψ |u|2z′2

}
≥ |u′|2 − |ψ||u|2

≥ |v′|2 − |ψ||u|2 = v′
2 − |ψ|v2 .

Therefore, v(v′′ + |ψ|v) ≥ 0 , and the desired result follows because v(s) > 0 on the
interval (0, b). �

Proof of theorem. Under the hypothesis |ψ(z)| ≤ C/2, where Sf = 2ψ, suppose
that f(α) = f(β) for some pair of distinct points α, β ∈ D. Then some solution
of the differential equation u′′ + ψu = 0 vanishes at α and β. Without loss of
generality, we may suppose that u(z) 6= 0 on the open line segment with endpoints
α and β. Let z = z(s) be the parametrization of this segment by arclength s, where
z(0) = α and z(b) = β, so that b = |α − β|. Then by Lemma 1, the function
v(s) = |u(z(s))| has the properties v(0) = v(b) = 0, v(s) > 0, and

v′′(s) + |ψ(z(s))| v(s) ≥ 0 , 0 < s < b .

We now apply the Sturm comparison theorem (see for instance [1]). Note that v(s)
is a real-valued function that satisfies the differential equation v′′(s)+g(s)v(s) = 0,
with

g(s) = −v′′(s)/v(s) ≤ |ψ(z(s))| ≤ C/2 .

On the other hand, the solutions of the differential equation y′′ + (C/2)y = 0

are sinusoids whose zeros are separated by the distance
√

2/C π. By the Sturm
comparison theorem,

|α− β| = b ≥
√

2/C π ,

as claimed. Note that if C = π2/2, then the argument shows that |α− β| ≥ 2, and
so we recover Nehari’s theorem that f is univalent in D if |Sf(z)| ≤ π2/2 .

Now for the estimate of valence. Let w be an arbitrary complex number. By
what we have already proved, the points in D where f(z) = w are the centers of

disjoint disks of radius π/
√

2C . If there are N such points, a comparison of areas
shows that

N π

(
π√
2C

)2

≤ π

(
1 +

π√
2C

)2

,
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which reduces to the stated inequality N ≤
(
1 +

√
2C
π

)2

. �

The bound on the valence is not sharp. For instance, for C = π2/2 it gives n ≤ 4,
whereas Nehari’s theorem shows that n ≤ 1. Nevertheless, the question remains
whether the bound is sharp in order of magnitude. Theorem 1 shows that under
the condition |Sf(z)| ≤ C the sharp bound on the valence is O(C) as C → ∞. On
the other hand, the simple example

f(z) = tan
(√

C/2 z
)
, for which Sf(z) = C > π2/2 , (2)

shows that the valence may increase as fast as
√
C. Indeed, f(x) = 0 for all points

x = ±kπ
√

2/C where k = 0, 1, 2, . . . , and at least
√

2C
π −1 of these points lie in the

unit disk. Thus the bound on the valence cannot be improved to anything better
than O(

√
C) as C → ∞.

§2. Schwarzians of slow growth.

We showed in [4] that for each Nehari function p(x) with (1 − x2)2p(x) → 0
as x → 1−, any condition of the form |Sf(z)| ≤ C p(|z|) implies that f has finite
valence in the disk. In the previous section we considered functions with |Sf(z)| ≤
C and obtained an explicit estimate for the valence in terms of C. We now take
p(x) = 2

1−x2 , the Nehari function in the univalence criterion of Pokornyi [17], and

derive an estimate, in terms of the constant C, for the (finite) valence of functions
f with |Sf(z)| ≤ C p(|z|). We will content ourselves with an asymptotic estimate
as C → ∞, although the proof can be adapted to yield an explicit bound.

Theorem 2. Let f be analytic and locally univalent in D, and suppose its Schwarzian

derivative satisfies

|Sf(z)| ≤ 2C

1 − |z|2 , z ∈ D , (3)

for a constant C > 2. Then f has finite valence N = N(C) ≤ AC logC, where A
is some absolute constant.

The proof of Theorem 2 will invoke the separation result of Theorem 1. The
following geometric lemma will be useful.

Lemma 2. If n points z1, z2, . . . , zn lie in an annulus ρ ≤ |z| ≤ ρ + d ≤ 1 and

have the separation property |zj − zk| ≥ 2d for j 6= k, then n ≤ 2π/d.

Proof of lemma. It will suffice to show that | arg{zj}− arg{zk}| > d for j 6= k. But
if | arg{zj} − arg{zk}| ≤ d for some j 6= k, then by the triangle inequality

|zj − zk| ≤ d+ ρd < 2d ,

which contradicts the hypothesis. �
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Proof of theorem. In terms of the Nehari function p(x) = 2/(1 − x2) , the hy-
pothesis is that |Sf(z)| ≤ C p(|z|). We claim that f is univalent in the disk

|z| < r0 = π/
√
π2 + 4C. Indeed, the function g(z) = f(r0z) has Schwarzian

Sg(z) = r20 Sf(r0z), and so

|Sg(z)| ≤ r20 C p(r0) =
π2

2
,

which implies that g is univalent in D, by Nehari’s theorem. Thus f is univalent in
|z| < r0.

We now define the sequence {rk} recursively by the formula

rk − rk−1 = dk =
π√

2C p(rk)
, k = 1, 2, . . . . (4)

If rk < 1, then since |Sf(z)| ≤ C p(rk) in the disk |z| ≤ rk, the Schwarzian of
g(z) = f(rkz) satisfies |Sg(z)| ≤ C r2k p(rk) in D. Thus by Theorem 1, if f(α) =
f(β) for two points α and β in the disk |z| < rk, then

|α− β| ≥ rk
√

2π√
C r2k p(rk)

=

√
2π√

C p(rk)
= 2 dk .

An appeal to Lemma 2 now shows that the valence Nk of f in the annulus rk−1 ≤
|z| < rk satisfies

Nk ≤ 2π

dk
= 2
√

2C p(rk) . (5)

Next we make a closer examination of the recurrence relation (4), which we
rewrite as

x− a = ε
√

1 − x2 , where a = rk−1 , x = rk , and ε =
π

2
√
C
.

Squaring and solving the quadratic equation, we find

x =
1

1 + ε2

(
a+ ε

√
1 − a2 + ε2

)
,

which leads after further calculation to the formula

1

x− a
=

√
1 − a2 + ε2 + εa

ε(1 − a2)
= φ(a) , say.

It is important to observe that φ is an increasing function on the interval 0 < a < 1.
This be verified by computing its derivative:

ε(1 − a2)2
√

1 − a2 + ε2 φ′(a) = a(1 − a2) + 2aε2 + ε(1 + a2)
√

1 − a2 + ε2 > 0 .
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Reverting to the original notation, we have dkφ(rk−1) = 1.

Now let R =
(
1 − 1

4C

)1/2
, and observe that R > R0 because C > 2. Define the

index m by the condition rm ≤ R < rm+1. By virtue of (5), the valence of the
function f in the disk |z| ≤ rm is bounded by

1 +

m∑

k=1

Nk ≤ 1 + 2π

m∑

k=1

1

dk
= 1 + 2π

m∑

k=1

φ(rk−1)
2(rk − rk−1)

≤ 1 + 2π

∫ R

0

φ(x)2 dx ,

since φ is an increasing function. Thus we need to estimate the integral

∫ R

0

φ(x)2 dx =
1

ε2

∫ R

0

(
√

1 + ε2 − x2 + εx)2

(1 − x2)2
dx

=
1

ε2

∫ R

0

dx

1 − x2
+

∫ R

0

1 + x2

(1 − x2)2
dx+

2

ε

∫ R

0

x
√

1 + ε2 − x2

(1 − x2)2
dx

= I1 + I2 + I3 , say.

Recall that R2 = 1 − 1
4C and ε = π

2
√

C
, so that

I1 ≤ 4C

π2

∫ R

0

dx

1 − x2
=

2C

π2
log

(1 +R)2

1 −R2

≤ 2C

π2
log(16C) = O(C logC) .

On the other hand,

I2 = O

(
1

1 −R2

)
= O(C) ,

whereas an integration by parts gives

I3 =
1

ε





[√
1 + ε2 − x2

1 − x2

]R

0

+

∫ R

0

x dx

(1 − x2)
√

1 + ε2 − x2





≤ O(C) +
1

ε

∫ R

0

x dx

(1 − x2)3/2
= O(C) .

If rm < R, the same argument that produced the estimate (5) shows that in the

annulus rm ≤ |z| < R the valence of f is no greater than 2
√

2C p(R) = O(C).
To complete the proof, we need to estimate the valence of f in the annulus

R ≤ |z| < 1. The radius R =
(
1 − 1

4C

)1/2
is chosen so that (1 − R2)2C p(R) = 1

2
.

The radius R1 =
(
1 − 1

2C

)1/2
has the properties 0 < R1 < R and

(1 −R2
1)

2C p(R1) = 2C(1 −R2
1) = 1 .
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Thus the bound (3) on the Schwarzian derivative of f implies that

|Sf(z)| ≤ 1

(1 − |z|2)2 , R1 ≤ |z| < 1 . (6)

Suppose now that f(α) = f(β) for two points α and β in the annulus R ≤ |z| < 1.
Then by Nehari’s theorem, or rather by its proof, the hyperbolic geodesic joining
α and β cannot lie entirely in the annulus R1 ≤ |z| < 1. For then the Schwarzian
of f would satisfy (6) along such a geodesic. By a well-known technique of Nehari
[14], this would imply that a function g = f ◦ ϕ, where ϕ is a suitable conformal
automorphism of the disk, satisfies |Sg(x)| ≤ (1 − x2)−2 on the real interval −1 <
x < 1 and has the property g(a) = g(b) for a pair of distinct points a and b in
that interval. Equivalently, a solution to the associated linear differential equation
vanishes at two points of the interval (−1, 1), which is not possible. This shows
that f is univalent in each part of the annulus R ≤ |z| < 1 which lies inside the arch
of some hyperbolic geodesic entirely contained in the larger annulus R1 ≤ |z| < 1.
The conclusion is strongest if we take the hyperbolic geodesic to be tangent to the
circle |z| = R1.

The estimate of valence in the annulus R ≤ |z| < 1 now reduces to a covering
problem, namely to estimate the number of curvilinear rectangles required to cover
the annulus. Here a curvilinear rectangle is understood to mean the intersection of
the given annulus with the region inside a hyperbolic geodesic that is tangent to
the circle |z| = R1. Observe that the geodesic that is tangent to this circle at the
point z = R1 is the image of the imaginary axis under the Möbius automorphism

T (z) =
z +R1

1 +R1z
, z ∈ D .

In order to locate the two points where this geodesic meets the circle |z| = R , we
calculate that |T (iy)| = R implies

y2 =
R2 −R2

1

1 −R2R2
1

=
2C

6C − 1
.

Choosing y > 0, we find by further calculation that

arg{T (iy)} = tan−1

(
y

1 + y2

1 −R2
1

R1

)

= tan−1

(√
6C − 1

8C − 1

1√
2C − 1

)
≥ tan−1

(√
3

8C

)
≥ 1

5C

for all constants C sufficiently large. Therefore, the annulus R ≤ |z| < 1 is contained
in the union of at most [5πC]+1 curvilinear rectangles of the type described, where
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[x] denotes the integer part of x. Consequently, the valence of f in this annulus is
O(C) as C → ∞. This concludes the proof of Theorem 2. �

The example (2) again shows that the estimate of valence in Theorem 2 cannot

be improved to o(
√
C). In search of a better lower bound, it is natural to investigate

the zeros of solutions of the differential equation

y′′ +
C

1 − x2
y = 0 (7)

in the interval (−1, 1). The solutions of (7) are easily seen to have the form y =
(1 − x2)u′, where u is a solution of the Legendre equation

(x2 − 1)u′′(x) + 2xu′(x) − C u(x) = 0 . (8)

(Compare Kamke [10], 2.240, eq. 14, p. 460.) If C = n(n + 1) for n = 1, 2, . . . ,
one solution of (8) is the Legendre polynomial u = Pn(x), which is known to
have exactly n simple zeros in the interval (−1, 1). Thus by Rolle’s theorem, the
derivative P ′

n(x), a polynomial of degree n− 1, has exactly n− 1 zeros in (−1, 1).
In other words, if C = n(n + 1), then some solution of (7) has at least n − 1
zeros in the unit disk. This remains true, by the Sturm comparison theorem, if
n(n + 1) < C < (n + 1)(n + 2). The conclusion is that some analytic function

whose Schwarzian satisfies (3) has valence (loosely speaking) at least
√
C, which

shows again that the asymptotic estimate of Theorem 2 cannot be improved beyond
N = O(

√
C) as C → ∞.

§3. Uniform local univalence and harmonic mappings.

The pseudohyperbolic metric is defined by

ρ(α, β) =

∣∣∣∣
α− β

1 − αβ

∣∣∣∣ , α, β ∈ D ,

and is Möbius invariant. More precisely, ρ(ϕ(α), ϕ(β)) = ρ(α, β) if ϕ is any Möbius
self-mapping of D. The pseudohyperbolic disk with center α and radius r is defined
by

∆(α, r) =
{
z ∈ D : ρ(z, α) < r

}
.

It is a true Euclidean disk, but α and r are not the Euclidean center and radius
unless α = 0. The hyperbolic metric is

d(α, β) =
1

2
log

1 + ρ(α, β)

1 − ρ(α, β)
.

The Schwarzian norm of a function f analytic and locally univalent in the unit
disk is defined by

‖Sf‖ = sup
z∈D

(1 − |z|2)2|Sf(z)| .
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It is Möbius invariant in the sense that ‖S(f ◦ ϕ)‖ = ‖Sf‖ for any Möbius self-
mapping ϕ of the unit disk. The previously mentioned result of Nehari [13], a
special case of Theorem A, can be rephrased to say that f is univalent in D if
‖Sf‖ ≤ 2. In the converse direction, Kraus [11] showed that ‖Sf‖ ≤ 6 whenever
f is analytic and univalent in D. The bound is sharp, since the Koebe function
k(z) = z/(1 − z)2 has Schwarzian

Sk(z) = − 6

(1 − z2)2
.

According to the theorem of B. Schwarz [19], the condition ‖Sf‖ < ∞ implies
that f is uniformly locally univalent in the hyperbolic metric, or equivalently in the
pseudohyperbolic metric. Specifically, this means that for some radius r > 0, the
function f is univalent in every pseudohyperbolic disk ∆(α, r). Conversely, if f is
uniformly locally univalent, then ‖Sf‖ <∞. In fact, it is known that ‖Sf‖ ≤ 6/r2.
To see this, suppose that f is univalent in every pseudohyperbolic disk ∆(α, r). For
any fixed α ∈ D, the Möbius transformation

ϕ(z) =
rz + α

1 + αrz
, z ∈ D ,

maps D onto ∆(α, r). Thus g = f ◦ϕ is univalent in D, and so ‖Sg‖ ≤ 6 by Kraus’
theorem. In particular, |Sg(0)| ≤ 6. But

Sg(0) = S(f ◦ ϕ)(0) = ((Sf)(ϕ(0)))ϕ′(0)2 = r2(1 − |α|2)2Sf(α) ,

and so r2(1−|α|2)2|Sf(α)| ≤ 6. Taking the supremum over all α ∈ D, we conclude
that ‖Sf‖ ≤ 6/r2.

To what extent do these relations generalize to harmonic mappings? A complex-
valued harmonic function in a simply connected domain has the canonical repre-
sentation f = h+ g, unique up to an additive constant, where h and g are analytic
functions. By a theorem of H. Lewy (see [9]), the Jacobian |h′|2 − |g′|2 of a locally
univalent harmonic mapping never vanishes. The harmonic mappings with posi-
tive Jacobian are said to be orientation-preserving. These are harmonic mappings
whose dilatation ω = g′/h′ is an analytic function with |ω(z)| < 1. An orientation-

preserving harmonic mapping lifts to a mapping f̃ onto a minimal surface described
by conformal parameters, if and only if ω = q2, the square of some analytic func-
tion q. For such mappings f we have defined [2] the Schwarzian derivative by the
formula

Sf = 2
(
σzz − σ2

z

)
,

where σ = log
(
|h′| + |g′|

)
and

σz =
∂σ

∂z
=

1

2

(
∂σ

∂x
− i

∂σ

∂y

)
, z = x+ iy .
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If f is analytic, Sf is the classical Schwarzian. If f is harmonic and ϕ is analytic,
then f ◦ ϕ is harmonic and

S(f ◦ ϕ) = ((Sf) ◦ ϕ)ϕ′2 + Sϕ ,

a generalization of the classical formula for analytic functions f . In particular,

S(f ◦ ϕ) = ((Sf) ◦ ϕ)ϕ′2

if ϕ is a Möbius self-mapping of the disk. From this it follows that the Schwarzian
norm

‖Sf‖ = sup
z∈D

(1 − |z|2)2|Sf(z)| .

of a harmonic mapping retains the Möbius invariance property ‖S(f ◦ϕ)‖ = ‖Sf‖.
Theorem 3. Let f = h+ g be an orientation-preserving harmonic mapping whose

dilatation ω = g′/h′ is the square of an analytic function in the unit disk. Then

‖Sf‖ <∞ if and only if f is uniformly locally univalent.

The proof will invoke a recent result of Chuaqui and Hernández [6], which we
state here for reference.

Theorem B. Let f = h+g be an orientation-preserving harmonic mapping in the

unit disk, and suppose that h is univalent and h(D) is convex. Then f is univalent

in D.

Proof of Theorem B. In the paper [6] this result comes out of a more general
argument, but the proof for this special case is so short that we include it here
for completeness. If f(z1) = f(z2), then h(z1) − h(z2) = g(z2) − g(z1). With the
notation w1 = h(z1) and w2 = h(z2), this can be written as

w1 − w2 = ϕ(w2) − ϕ(w1) , where ϕ = g ◦ h−1 .

But ϕ is analytic on the convex domain h(D), so this says that

w1 − w2 =

∫ w2

w1

ϕ′(w) dw ,

where the integral is taken over a straight-line segment. However, this is not pos-
sible, because |ϕ′(w)| = |g′(z)/h′(z)| < 1 by the hypothesis that f is orientation-
preserving. �

We will also need a result that is implicit in work of Sheil-Small [20]. An analytic
or harmonic function f is said to be uniformly locally convex if there exists a radius
r > 0 such that f maps every pseudohyperbolic disk ∆(α, r) univalently onto a
convex region.
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Theorem C. Let f = h + g be an orientation-preserving harmonic mapping that

is uniformly locally univalent in the unit disk. Then its analytic part h is uniformly

locally convex.

Proof of Theorem C. Suppose first that f is univalent in the entire disk D. Then
we may assume without loss of generality that f ∈ SH , the class of orientation-
preserving univalent harmonic mappings of D for which h(0) = g(0) = 0 and h′(0) =
1. The analytic part of such a mapping has the power series expansion h(z) =
z + a2z

2 + . . . , and it is a result of Clunie and Sheil-Small that the coefficients a2

have an absolute bound; in other words, λ = supf∈SH
|a2| is finite. It is conjectured

that λ = 3, but the best bound currently known (see [9], p. 97) is approximately
λ < 49. Now if f ∈ SH , then for each fixed ζ ∈ D the function

F (z) =
f
(

z+ζ

1+ζz

)
− f(ζ)

(1 − |ζ|2)h′(ζ) = H(z) +G(z)

also belongs to the class SH , so that | 1
2
H ′′(0)| ≤ λ. But a calculation gives

H ′′(0) = (1 − |ζ|2)h
′′(ζ)

h′(ζ)
− 2ζ ,

so we have ∣∣∣∣
ζh′′(ζ)

h′(ζ)
− 2ρ2

1 − ρ2

∣∣∣∣ ≤
2λρ

1 − ρ2
,

which implies that

Re

{
1 +

ζh′′(ζ)

h′(ζ)

}
≥ 1 − 2λρ+ ρ2

1 − ρ2
> 0

for |ζ| = ρ < µ = λ−
√
λ2 − 1. By the familiar analytic criterion for convexity (see

[8], p. 42), this shows that h(z) is convex in the disk |z| < µ. If f is assumed to be
univalent only in the subdisk |z| < r, the preceding result can be adapted to show
that h is univalent in the disk |z| < µr. If f is univalent in the pseudohyperbolic
disk ∆(α, r), then for a suitable Möbius self-mapping ϕ of D the composite function
Φ = f ◦ ϕ is univalent in ∆(0, r), and so its analytic part is convex in ∆(0, µr),
which implies that the analytic part h of f = Φ ◦ ϕ−1 is convex in ∆(α, µr). Since
this is true for each α ∈ D, the conclusion is that h is uniformly locally convex. �

Proof of Theorem 3. We showed in [4] that ‖Sf‖ < ∞ if and only if ‖Sh‖ < ∞.
Therefore, if ‖Sf‖ <∞, then ‖Sh‖ <∞, and so h is uniformly locally univalent, by
the theorem of B. Schwarz. In other words, h is univalent on every pseudohyperbolic
disk ∆(α, r) for some fixed radius r. Then by the classical result on radius of

convexity (see [8], p. 44), h maps every disk ∆(α, (2 −
√

3)r) to a convex domain.
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It now follows from Theorem B that f is univalent in each disk ∆(α, (2 −
√

3)r).
Thus f is uniformly locally univalent.

Conversely, suppose the harmonic mapping f is uniformly locally univalent in D.
Then by Theorem C its analytic part h is uniformly locally convex, hence uniformly
locally univalent. Therefore, ‖Sh‖ < ∞ by Kraus’ theorem, as discussed at the
beginning of this section. It now follows from our result in [4] that ‖Sf‖ <∞. �

As a corollary of the proof, we are able to establish a numerical bound on ‖Sf‖
for univalent harmonic mappings f , analogous to Kraus’ bound ‖Sf‖ ≤ 6 for
analytic univalent functions in the disk. By Möbius invariance we may assume
without loss of generality that the harmonic mapping f = h+g belongs to the class
SH . Then as shown in the proof of Theorem C, its analytic part h(z) is convex

in the disk |z| < µ, where µ = λ −
√
λ2 − 1. Thus the function H(z) = h(µz) is

convex in D, so it has Schwarzian norm ‖SH‖ ≤ 2, by a result of Nehari [15]. Since
‖SH‖ = µ2‖Sh‖, it follows that ‖Sh‖ ≤ 2/µ2. Consequently, the estimate λ < 49
shows that ‖Sh‖ < 19, 204. On the other hand, a result of Pommerenke [18] implies
that

‖Sf‖ ≤ ‖Sh‖ + 2
(
1 + 1

2
‖Sh‖

)1/2
+ 7 ,

as we showed in [4]. Inserting the preceding estimate ‖Sh‖ < 19, 204, we obtain
the absolute bound ‖Sf‖ < 19, 407 for all harmonic mappings f that are univalent
in D and have dilatation that is a perfect square.

It is an open problem to determine the sharp bound. We showed in [4] that
‖Sf‖ ≤ 45 for all mappings f with dilatation ω = q2 that are convex in the
horizontal direction. We also observed that the horizontal shear of the Koebe
function with dilatation ω(z) = z2 has Schwarzian

Sf = − 4

(
1

1 − z
+

z

1 + |z|2
)2

,

from which an easy calculation gives ‖Sf‖ = 16. These results are unchanged if
the Koebe function is sheared with dilatation ω(z) = eiθz2 for any θ. Therefore,
since the Koebe function maximizes the Schwarzian norm for analytic univalent
functions, it is reasonable to conjecture that ‖Sf‖ ≤ 16 for all univalent harmonic
mappings in the disk whose dilatation is a perfect square.

§4. Bounds on valence of harmonic lifts.

Theorems 1 and 2 extend readily to the lifts of harmonic mappings to minimal
surfaces. In [3] we obtained the following generalization of Nehari’s theorem.

Theorem D. Let f = h+g be a harmonic mapping of the unit disk, with conformal

parameter eσ(z) = |h′(z)| + |g′(z)| 6= 0 and dilatation g′/h′ = q2 for some mero-

morphic function q. Let f̃ denote the Weierstrass–Enneper lift of f to a minimal

surface with Gauss curvature K = K(f̃(z)) at the point f̃(z). Suppose that

|Sf(z)| + e2σ(z)|K(f̃(z))| ≤ 2p(|z|) , z ∈ D ,
12



for some Nehari function p. Then f̃ is univalent in D.

The valence estimates for analytic functions in Theorems 1 and 2 have corre-
sponding generalizations to harmonic lifts.

Theorem 1′. Let f = h+g be a harmonic mapping of the unit disk with conformal

parameter eσ(z) = |h′(z)|+ |g′(z)| 6= 0 and dilatation g′/h′ = q2 for some meromor-

phic function q, and let f̃ be its lift to a minimal surface with Gauss curvature K.

Suppose that

|Sf(z)| + e2σ(z)|K(f̃(z))| ≤ C , z ∈ D ,

for some constant C > π2/2. Then |α − β| ≥
√

2/C π for any pair of points

α, β ∈ D where f̃(α) = f̃(β). Consequently, the lift f̃ has finite valence and meets

any given point at most
(
1 +

√
2C
π

)2

times.

Theorem 2′. Let a harmonic mapping f = h + g be as in Theorem 1′ but satisfy

the inequality

|Sf(z)| + e2σ(z)|K(f̃(z))| ≤ 2C

1 − |z|2 , z ∈ D ,

for some constant C > 2. Then its lift f̃ has finite valence N = N(C) ≤ AC logC,

where A is some absolute constant.

The proofs of Theorems 1′ and 2′ reduce ultimately to the same consideration
of zeros of solutions to differential equations as in the proofs of Theorems 1 and 2.
Here the link with differential equations and the Sturm theory comes from a result
of Chuaqui and Gevirtz [5], as developed in our earlier work [3,4]. The details are
relatively straightforward and will not be pursued here.
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